
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2008; 57:1023–1045
Published online 27 November 2007 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.1669

Sensitivity analysis of low Reynolds number channel flow
using the finite volume method
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SUMMARY

An unsteady finite volume-based fractional step algorithm solved on a staggered grid has been developed
for computing design sensitivity parameters in two-dimensional flows. Verification of the numerical code
is performed for the case of low Reynolds number, pressure-driven flow through a straight channel,
which has an exact steady-state solution to the Navier–Stokes equations. Sensitivity of the flow to the
channel height, fluid viscosity, and imposed pressure gradient is considered. Three different numerical
techniques for computing the design sensitivity parameters: finite difference, complex-step differentiation,
and sensitivity equation method (SEM), are compared in terms of numerical error (relative to the exact
solution), computational expense, and ease of implementation. Results indicate that, of all the three
methods, complex step is the most accurate and requires the least computational time. In addition,
treatment of the boundary conditions in SEM is addressed, within the framework of the present finite
volume approach, with special attention given to parameter dependence in the boundary conditions. Error
estimation based on the Grid Convergence Index provides a good indication of the exact error in the SEM
solutions. An example of application of the use of sensitivity parameters to estimate the propagation of
input uncertainty through the numerical simulation is also provided. Copyright q 2007 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

With the proliferation of computational fluid dynamics (CFD), techniques and applications that
augment CFD as a design and analysis tool have become increasingly important. Sensitivity
analysis, when coupled with CFD, is one such example that provides insight on how design
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parameters influence a given flow field. While several studies have discussed sensitivity analysis
techniques in the context of finite element methods [1–10], the main contribution of the present
study is the development of a finite volume-based fractional step algorithm with staggered grid
for use in computing sensitivity parameters. The finite volume method is particularly popular
among engineers. In fact, two of the most heavily used commercial CFD packages (FLUENT
and STAR-CD) are based on this method. In the finite volume method, the solution domain
is divided into a discrete number of contiguous control volumes, over which the integral form
of the conservation equations is applied. By construction, the method is conservative and can
accommodate any type of grid, but favors a staggered grid for simplicity of the evaluation of
the fluxes at control volume faces. Using the present finite volume CFD code as a computational
engine, several different methods for calculating sensitivity parameters are compared including
finite difference, complex-step differentiation, and the continuous sensitivity equation method
(SEM). The CFD and numerical sensitivity algorithms are verified for the case of low Reynolds
number, pressure-driven flow through a straight channel. This test case has an exact steady-state
solution to the Navier–Stokes equations and, thus, permits analytic expressions to be obtained for
the sensitivity parameters. Channel flow, which may be classified as a canonical wall-bounded
flow, was chosen for verification in the present study because of the inherent parameter dependence
on the velocity field and boundary conditions, as well as its relevance to longer-term goals of the
authors as described further in Section 4.

Over the last several years, computational sensitivity analysis has been integrated into numerical
schemes for parameter estimation [4], optimization [3, 5, 7], and uncertainty estimation [8, 11–13].
Numerical sensitivity analysis has potential to make significant contributions in these areas, espe-
cially in terms of the latter. Note, the terminology ‘error’ and ‘uncertainty’ are often used inter-
changeably, with ‘uncertainty’ generally implying the quantification of ‘error’. Some attempts
have been made recently to establish explicit definitions of these terms, as well as guidelines for
estimating and reporting uncertainty in numerical simulations [14–20]. For example, AIAA [17]
defines uncertainty as ‘a potential deficiency in any phase or activity of the modeling process that
is due to the lack of knowledge’, and error as ‘a recognizable deficiency in any phase or activity
of modeling and simulation that is not due to lack of knowledge’. Nevertheless, error classification
and uncertainty estimation are pre-eminent requirements in all simulation sciences, in order to
establish confidence in the numerical technique.

The validation process, involving the direct comparison of numerical results with experimental
data, yields a useful measure of confidence in the simulation. Non-negligible discrepancies between
simulation and experiment are typically traced back to a combination of model uncertainty, input
uncertainty, and numerical uncertainty [18]. The process of modeling a fluid flow may introduce
errors in the CFD results, due to, for example, oversimplification of the continuum model [21]
and/or turbulence model [22]. The present study only considers low Reynolds number flow so that
model uncertainty is negligible. Input uncertainty refers to errors in the experimental measurements
used for validation of the numerical simulation (e.g. the magnitude of the physical properties of
the fluid and dimensions of the flow domain or objects embedded in the flow). Sensitivity analysis,
in particular, provides a useful context for quantifying the link between input uncertainty and the
subsequent propagation of this uncertainty into the simulation results. Along these lines, Putko
et al. [13] recently developed a method to treat input parameter uncertainty and the propagation
of that uncertainty through gradient-based design optimization schemes using first- and second-
order sensitivity derivatives. Numerical uncertainty in CFD comes from computer round-off error,
introduced by the representation of numbers using floating point precision, and truncation error,
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due to the discretization of time and physical space. Truncation error stems from truncating the
Taylor series representation of derivatives, as well as the iterative nature of the solution process. The
numerical uncertainty resulting from the spatial and temporal convergences of the discretization
scheme is generally quantified using error estimators [15, 20, 23].

The outline of this paper is as follows. First, a brief overview of numerical sensitivity methods
is provided. The finite volume CFD method and its extension to SEM are then discussed. The
exact solutions for the velocity field and sensitivity parameters for the channel flow test case
are presented. Sensitivity of the velocity to the channel height, imposed pressure gradient, and
fluid viscosity is considered. Verification results for the field variables and sensitivities are shown,
including a comparison of the performance of the three different numerical sensitivity methods.
Finally, estimates of the numerical and input uncertainty are quantified.

2. SENSITIVITY ANALYSIS METHODS

Sensitivity analysis involves calculating the partial derivatives of the field variables with respect
to the design parameters. Design parameters may be classified as physical parameters (such as the
viscosity and density of the fluid) or geometric parameters (such as the height of the flow domain
or the shape of an imbedded object in the flow). The sensitivity parameter associated with a field
variable u and design parameter � is defined as

Su,� = �u
��

(1)

Note, the sensitivity parameter is often expressed as Su without explicit reference to a particular
parameter. In this study, P will imply a vector of important design parameters, P=(P1, . . . , Pk).
The sensitivity parameters associated with P provide a quantitative measure of the change in
magnitude of the field variables at every point in the flow, due to changes in the value of P about
a given baseline condition. As such, sensitivity analysis can be used to generate the gradients
necessary for optimization algorithms [1–3]. In addition, local gradient information from the
sensitivity analysis can be used to approximate flow fields ‘near’ the given baseline case [24, 25].
Sensitivity analysis may be performed using several different numerical techniques, including
finite difference, complex-step differentiation, software differentiation, and continuous sensitivity
equation method.

2.1. Finite difference method

Perhaps the most commonly used method for sensitivity analysis (and simplest to implement)
is finite difference. The finite difference method uses a finite difference approximation to the
sensitivity derivative. To first-order accuracy, the sensitivity parameter is approximated as

Su = u(P+�P)−u(P)

�P
+O(�P) (2)

In order to calculate the sensitivity parameter with finite difference, at least two different numerical
simulations are required, one using the value P (referred to as the baseline case) and another using
the value P+�P (referred to as the perturbation). Therefore, the finite difference method can be
computationally expensive, especially for problems with a large number of design parameters.
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In addition, the truncation error depends on the step size �P . If �P is too large, the sensitivity
derivative may not give a good approximation to the local gradient. On the other hand, if �P is
too small, sensitivity derivatives may be of the order of the fluctuations in the u field and machine
round-off errors become significant. Currently, no methodology exists for selecting the appropriate
size for �P , other than a parameter study. This poses a problem because Su can be quite sensitive
to the value used for �P , as shown later in Section 5. Higher-order finite difference approximations
certainly reduce the truncation error in Su ; however, at the cost of increasing the total number
of numerical simulations that must be performed. For example, given k parameters of interest, a
first-order accurate finite difference method for Su would require k+1 CFD solves (one for the
baseline and one for each parameter); whereas a second-order accurate method would require 2k
CFD solves.

2.2. Complex-step method

The complex-step method is similar to the finite difference method; however, the approximation
to the sensitivity derivative with respect to a complex parameter is P= f (P+ i�P), where P
denotes the nominal parameter value associated with a baseline case. Performing a Taylor series
expansion of the real-valued variable u about the complex parameter P gives

u(P+ i�P)=u(P)+ �u
�P

∣∣∣∣
P
i�P− 1

2!
�2u
�P2

∣∣∣∣∣
P

�P2+O(�P3) (3)

The sensitivity parameter follows directly from (3) as

Su = Im[u(P+ i�P)]
�P

+O(�P2) (4)

The complex-step method is less sensitive to the value of �P because it does not involve a
difference operation in the discrete representation of the derivative, only a function evaluation using
complex arithmetic. Martins et al. [26] recommended using a step size �P on the order 10−8,
which reduced the normalized error in the sensitivity estimate to the same accuracy as the function
evaluation. Although the complex-step method eliminates the parameter step-size ambiguity of the
finite difference method, the cost trade-off increased the complication of the numeric code, which
must accommodate complex variables and complex arithmetic.

2.3. Software differentiation

Software differentiation uses a pre-processor that receives an existing numeric source code and
differentiates it line by line in order to generate a new source code that solves for the sensitivity
parameters. As such, software differentiation uses a discretize-then-differentiate approach to differ-
entiating the governing equations for sensitivity analysis. Software differentiation pre-processors
have been developed for C [27], Fortran [28, 29], and MATLAB [30–32], among others. Software
differentiation is not considered further in the present study.

2.4. Sensitivity equation method

The SEM requires that the original governing equation(s) of a given system, as well as the boundary
and initial conditions, be differentiated with respect to the design parameters prior to discretization
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[2, 6, 33]. The new set of equations for the sensitivity parameters may be solved by implementing
the same numeric algorithms and techniques as used with the original governing equations. At each
time step in the numeric algorithm, the field variables are computed followed by the sensitivity
parameters. Section 3 documents the application of SEM to the finite-volume-based numerical
solution of the incompressible, two-dimensional Navier–Stokes equations.

2.5. Normalized scaled sensitivity parameters

Because raw (or unscaled) sensitivity parameters are dimensional quantities, with units dependent
both on the field variable and physical/geometric parameter, direct comparison between the magni-
tude of one sensitivity parameter with another is not meaningful. Scaling the sensitivity parameters
by a nominal value of the physical/geometric parameter allows different sensitivity parameters
to be compared directly with consistent units. Furthermore, normalizing by a characteristic value
of the field variable provides a measure of the relative influence of a given design parameter on
the overall behavior of the flow field. The normalized scaled sensitivity parameter is denoted here
with ‘̃ ’ and defined as

S̃u,� =
(

�

u

)
�u
��

(5)

where the overline indicates the nominal or characteristic value associated with the baseline
(unperturbed) flow. For a design parameter � to exert a significant influence on the flow field, the
value of at least one of its normalized scaled sensitivity parameters (one sensitivity parameter for
each of the field variables) must be of order unity or greater when compared to the respective
normalized field variable with order unity [34].

3. NUMERICAL MODEL

The time evolution of incompressible viscous flow is described by the unsteady Navier–Stokes
equations

�(�ui )

�t
+ �(�uiu j )

�x j
=− �p

�xi
+ �

�x j

[
�

(
�ui
�x j

+ �u j

�xi

)]
(6)

subject to the constraint of conservation of mass,

�(�ui )

�xi
=0 (7)

where xi denotes the spatial coordinates, ui represents the components of the velocity field, � is
the fluid density, and � is the absolute viscosity of the fluid. Note, a lower case p is used herein
to denote pressure, while an upper case P is used to denote a design parameter.

3.1. CFD method

In this study, the numerical method used to solve (6) and (7) is a projection method, also known
as a fractional-step or time-splitting method, first proposed by Harlow and Welch [35] and Chorin
[36], and applied to canonical CFD problems using finite volumes by Kim and Moin [37].
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The fractional-step method is based on the Hodge decomposition whereby any vector field (ûi )
can be decomposed into a divergence-free vector field (ui ) and the gradient of a scalar potential
(�),

ûi =ui +∇� (8)

Hodge decomposition is employed in two steps: (1) the momentum equations are integrated in
time to compute an intermediate velocity field ûi by the following equation:

ûi −uni
�t

= 3

2
Hn
i − 1

2
Hn−1
i (9)

where

Hi =−�(�uiu j )

�xi
+ �

�x j

[
�

(
�ui
�x j

+ �u j

�xi

)]
(10)

and (2) the intermediate velocity field is projected onto a divergence-free velocity field using

un+1
i − ûi

�t
=−1

�

��

�xi
(11)

The superscripts n represent the time step. Note, the integration of the momentum equation for the
intermediate velocity field does not contain the pressure gradient term. The intermediate velocity
field will not, in general, satisfy (7). By taking the divergence of (11) and requiring that ∇ ·un+1

i =0,
an equation for the scalar potential is as follows:

�2�
�x j�x j

= �

�t
∇ · ûi (12)

In this manner, the divergence of the intermediate velocity field is used as a source term to solve
for the gradient of the scalar potential. The scalar potential � must be corrected [37] in order to
retrieve the pressure field,

p=�− ��t

2
∇2� (13)

The current fractional-step algorithm utilizes the finite volume method with a staggered uniform
Cartesian grid. The spatial derivatives are discretized using second-order central differencing,
and the temporal derivatives are advanced in time using Adams–Bashforth time integration. The
CFD algorithm is solved using the dimensional form of the governing equations to maintain
the dependence on the physical and geometric parameters for sensitivity analysis. The algorithm
solves the momentum equations explicitly and solves for the scalar potential implicitly using
a conjugate gradient method. Because only steady-state solutions are considered in this study,
temporal convergence is monitored at each iteration. The temporal convergence criterion is based
on the magnitude of the residual, defined here as the infinity norm of the relative difference in the
value of the variable of interest (�) between the current and previous time steps,

res=
∥∥∥∥�n−�n−1

�n

∥∥∥∥∞
(14)
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Figure 1. An example of staggered grid configuration with 5×5 cells. The solid lines represent the physical
boundary. ◦ u-node, • p-node, and × v-node.

The CFD algorithm is solved on a staggered grid, an example of which is shown in Figure 1.
Staggered grids are defined by separate node locations for each velocity component, as well as the
scalar potential. The momentum equations are solved on the appropriate velocity grids to obtain
the horizontal and vertical velocities at the u and v nodes, respectively; while, the scalar potential
and continuity equations are solved on a third grid to obtain values at the p nodes (located at the
cell centers of the combined velocity grids). Staggered grids are well suited to the finite volume
approach in that conservation laws are evaluated over cells or control volumes. Staggered grids
also tend to reduce the likelihood of convergence problems and oscillations in the pressure and
velocity fields that can plague collocated grids [38]. In addition, with a staggered grid, the normal
velocity at a boundary can be explicitly defined. The disadvantage, however, remains that tangential
velocities at boundaries are not explicitly defined and must be approximated.

3.2. CFD algorithm verification

To verify the order of temporal and spatial discretization of the CFD method, the present code
was used to numerically solve a periodic vortical flow that decays with time. The exact solution
to the Navier–Stokes equations and conservation of mass for this particular flow is given by Kim
and Moin [37]

u(x, y, t)=−cos(x) sin(y)e−2t (15)

v(x, y, t)=sin(x) cos(y)e−2t (16)

Note, the viscosity was taken as unity and the periodic boundary conditions were used in the
simulation. The results of a grid refinement study are given in Figure 2, in terms of the grid size,
�xi versus the L2 norm of the error,

�= �a−�n
�a

(17)

where � represents the field variable of interest (in this case, the u velocity) and the subscripts
a and n denote the analytical and numerical solutions, respectively. The manufactured analytical
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Figure 2. L2 norm of u velocity error plotted against characteristic grid size for the test case
of a decaying vortex. The Courant number remained constant for all data points. The solid line

represents a second-order method.

solution for this flow is given by Kim and Moin [37]. The data in Figure 2 were obtained at t=�/2
with a uniform mesh having dimensions �/2�x�5�/2 and �/2�y�5�/2. All of the simulations
were run with a constant ratio of �t/�x (or Courant number). The results indicate that the present
CFD algorithm follows second-order convergence for both temporal and spatial discretization.

3.3. Sensitivity equations

Equations (7), (6), and (12) may be differentiated with respect to parameter P to generate a new
system of governing equations for the sensitivity parameters,

Sui =
�ui
�P

and Sp = �p
�P

(18)

Using these definitions, the sensitivity equations are

�(�Sui )

�xi
+ �(�′ui )

�xi
=0 (19)

�(�Sui )

�t
+ �(�′ui )

�t
+ �(�′uiu j )

�x j
+ �(�Sui u j )

�x j
+ �(�ui Su j )

�x j

=−�Sp
�xi

+ �
�x j

[
�

(
�Sui
�x j

+ �Su j

�xi

)]
+ �

�x j

[
�′
(

�ui
�x j

+ �u j

�xi

)]
(20)

The prime in Equations (19) and (20) represents the total derivative of the fluid properties � and �
with respect to P . Note, the governing equations for Su,� and Su,�p/�x contain additional source
terms due to the presence of the physical parameters in the Navier–Stokes equations. Equations
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(19) and (20) are solved using the same numerical algorithm presented in Section 3.1. The pressure
sensitivity is obtained in a manner similar to (12) and (13),

�S�

�x j�x j
= �

�t
∇ · Ŝui (21)

Sp = S�− ��t

2
∇2S� (22)

3.4. Boundary conditions for SEM

The boundary conditions necessary to solve the sensitivity equations come from implicit differ-
entiation of the corresponding momentum and pressure boundary conditions, which may depend
on one or more physical and/or geometric parameters. Consider the following non-homogeneous
Dirichlet boundary condition for the velocity:

u(xb(P), yb(P); P)=c(xb(P), yb(P); P) on � (23)

where the subscript b denotes the boundary value. Differentiating (23) with respect to the parameter
P gives

�u
�P

+ �u
�x

�xb
�P

+ �u
�y

�yb
�P

= �c
�P

+ �c
�x

�xb
�P

+ �c
�y

�yb
�P

(24)

Solving (24) for �u/�P (i.e. Su) yields

Su =
[

�c
�P

+ �c
�x

�xb
�P

+ �c
�y

�yb
�P

]
− �u

�x
�xb
�P

− �u
�y

�yb
�P

on � (25)

where the term inside the square bracket may be expressed as a total derivative, D/DP≡�/�P+
(�xb/�P) ·∇. If P represents a geometric parameter (height of the domain, for instance) information
about the velocity gradients evaluated at the boundary are required, as well as the boundary
parameterization �xb/�P . For the case of a non-homogeneous Neumann boundary condition,
consider the example

�u
�y

=c(xb(P), yb(P); P) on � (26)

Differentiating (26) with respect to the parameter P yields

�Su
�y

= Dc

DP
−∇

(
�u
�y

)
·
(

�xb
�P

,
�yb
�P

)
for x=0 (27)

These examples show that the boundary conditions for the sensitivity equations match the same
type as that of the corresponding field variable (Dirichlet or Neumann), and may contain additional
terms associated with the gradient of the field variable, the boundary parameterization associated
with geometric sensitivities, and/or parameter dependence in the boundary value of the field
variable. Further examples are given by Turgeon et al. [5] and Hristova et al. [9]. In general, initial
conditions should be handled in the same manner as described above for the boundary conditions.
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4. CHANNEL FLOW TEST CASE

Although limited to a few specific cases, exact solutions to the Navier–Stokes equations [39, 40]
are used extensively in the CFD verification process. The method of manufactured solutions is
another approach commonly used in CFD verification [9, 10, 41], see also Section 3.2. In this
study, verification of the finite volume numerical methods for computing sensitivity parameters
was performed using two-dimensional, low Reynolds number flow through a straight channel,
which has an exact solution to the Navier–Stokes equations under steady-state, fully developed
conditions. Channel flow was chosen as a test case here because it represents a canonical wall-
bounded flow and, as such, constitutes a suitable stepping stone for more complicated turbulent
boundary layer flows, which are of primary interest to the authors. Channel flow also involves an
inherent dependence of the flow on the channel height, which allowed geometric sensitivities to
be explored, as well as parameter dependence of the inlet velocity boundary condition.

4.1. Exact solution for steady-state, fully developed flow

Channel flow, also known as Poiseuille flow in honor of J. Poiseuille [42], is characterized by
unidirectional flow between two stationary, parallel, flat plates separated by a distance h, whereby
an externally applied streamwise pressure gradient drives the flow. The continuity and momentum
equations are

�u
�x

=0 and �
�2u
�y2

= �p
�x

(28)

respectively, with boundary conditions

u(0)=0 and u(h)=0 (29)

The solution to Poiseuille flow is

u(y)= −h2

2�

�p
�x

[
y

h
−
( y
h

)2]
(30)

The exact solution for the streamwise velocity u, as expressed in (30), depends on three design
parameters: the fluid viscosity �, the imposed pressure gradient �p/�x , and the gap height h.
Analytic expressions for the sensitivity of u to these parameters are obtained by differentiating
(30),

Su,� = h2

2�2
�p
�x

[
y

h
−
( y
h

)2]
(31)

Su,�p/�x = −h2

2�

[
y

h
−
( y
h

)2]
(32)

Su,h = −y

2�

�p
�x

(33)

The corresponding scaled normalized sensitivity parameters are

S̃u,� =−6

[
y

h
−
( y
h

)2]
, S̃u,�p/�x =6

[
y

h
−
( y
h

)2]
and S̃u,h =6

y

h
(34)
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using normalizations based on the characteristic value of each parameter in the baseline (unper-
turbed) case, as well as the average velocity,

U = −h2

12�

�p
�x

(35)

All the normalized scaled sensitivity parameters in (34) have an order of magnitude of unity
near the center of the channel. The �p/�x and � sensitivities have similar profiles but opposite
sign, with a maximum absolute value of 1.5 along the channel centerline. Because the no-slip
condition remains enforced at the upper and lower boundaries, increasing � and �p/�x will
necessarily cause a nonlinear change in the u velocity across the gap. Owing to the symmetry of the
domain, the maximum change would be expected along the channel centerline. The h-sensitivity
parameter increases linearly with height across the channel, exhibiting a maximum value of 6
at the top boundary and a minimum value of 0 at the lower boundary. A positive perturbation
in h and �p/�x translates into an increase in the overall mass flow rate through the channel;
while, the opposite is true for a positive perturbation in �. It is important to realize that the
mass flow rate (i.e. U ) is not an independent design parameter in this scenario. This will have
important ramifications with regard to the boundary conditions used in SEM (as discussed further in
Section 4.3).

4.2. Numerical implementation

Numerical simulations for Poiseuille flow were performed using the CFD algorithm described
in Section 3.1 at a Reynolds number based on average velocity of Reh =150 (using h=0.5m,
�=1.78×10−5 kgm−1 s−1, and �=1.22kgm−3). The computational domain spans 0�x/h�12
and 0�y/h�1, as shown in Figure 3. Simulations were run using grid resolutions of 10×120,
20×240, 30×360, 40×480, and 50×600. At each grid resolution, steady-state numerical solutions
were obtained at four different temporal convergence criterions: 10−3, 10−4, 10−5, and 10−6. As
indicated in Figure 3, the no-slip condition is enforced along the upper and lower boundaries,
a uniform (average) velocity is specified at the inlet, and a homogeneous Neumann boundary
condition in the x direction is maintained at the outlet for both velocity components. The boundary
conditions for the scalar potential � are homogeneous Neumann for all boundary faces with the
exception of the outlet, where a homogeneous Dirichlet boundary condition is employed. The
initial condition is u(x, y)=U and v(x, y)=0.

Boundary conditions for the SEM follow according to Section 3.4 and have similar form
as the velocity boundary conditions, with the exception of the inlet boundary condition, which
possesses functional dependence on all three parameters, see Equation (35). Also the inlet and
upper wall boundary conditions for the height sensitivity include the boundary parameterization
as well as the velocity gradients, as discussed further in Section 4.3. At the inlet and upper wall,
the velocity gradient must be computed and, due to the staggered grid, interpolated back to the
velocity nodes. The initial condition for the sensitivity derivatives is Su(x, y)= Sv(x, y)=0. Note,
in general, the initial conditions should be handled similar to the boundary conditions, as discussed
in Section 3.4. However, for simplicity here, homogeneous initial conditions were employed.
This may have resulted in slightly slower convergence rates in the SEM solutions as reported in
Section 5.2.
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Figure 3. Schematic of the computational domain and velocity boundary conditions used
in the finite volume solution.

4.3. Parameter dependence in the boundary condition

In the process of calculating the boundary conditions for SEM, particular care must be taken due
to the terms in (25). Specifically, the inlet boundary condition for Su,h is given by

Su,h(0, y)= �U
�h

−
(

�yb
�h

)
�u
�y

∣∣∣∣
x=0

(36)

The first term on the right-hand side of (36) is non-zero due to the functional dependence of the
inlet velocity on the geometric parameter h, see (35). Recall, U is not an independent design
parameter in this problem. The second term on the right-hand side of (36) is also non-zero. This
follows from the fact that �u/�y �=0 at the upper and lower boundaries where the no-slip condition
remains enforced, and from the boundary parameterization

yb=h

(
y

h

)
(37)

it follows that �yb/�h= y/h. The sensitivity equations for � and �p/�x also have non-homogeneous
Dirichlet inlet boundary conditions due to the functional dependence of U on these parameters. If
the parameter dependence ofU is neglected (or unknown), then incorrect boundary condition values
will cause gross errors in the SEM solutions. The above observations highlight the importance of
understanding parameter dependence in SEM, especially with regard to the boundary conditions
on the equations governing the sensitivity derivatives.

4.4. Alternative design parameter scenarios

In this study, the design parameters are considered to be h, �, and �p/�x . However, it is equally
probable that one might consider U (the average velocity) as a design parameter, instead of the
pressure gradient and viscosity. In this alternative scenario, the mass flow rate is controlled, while
the pressure gradient and viscosity take on whatever values are necessary in order to satisfy (35)
in the fully developed region. The aforementioned problems with regard to parameter dependence
in the inlet boundary condition are not relevant in this scenario. The scaled normalized sensitivity
parameter for U looks identical to that for the pressure gradient given in (34). However, the scaled
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normalized h sensitivity parameter is S̃u,h =6[2(y/h)2− y/h], which is much different than the
linear relationship given in (34). The ramifications are similar to the statements at the end of the
previous section.

Another interesting point should be stated regarding the height sensitivity. If a transformation is
made to shift the origin of the coordinate system to the channel centerline (	= y−h/2), then the
scaled normalized h sensitivity becomes S̃u,h =3, independent of the vertical position within the
gap. This follows directly from differentiating the transformed exact solution, u(	)=6U [−(	/h)2+
1/4]. The interpretation is that if the lower and upper boundaries of the channel are increased by
an amount �h/2, then the u velocity will increase uniformly across the channel gap. This contrasts
the previous scenario (34) wherein the lower boundary remains fixed and the upper boundary
moves an amount �h, resulting in a maximum increase in the u velocity near the top boundary and
minimal increase near the lower boundary. This will have ramifications on the use of sensitivity
derivatives to estimate uncertainty bounds on the numerical velocity solution due to uncertainty in
measurements of the channel height (as discussed further in Section 6.2).

5. NUMERICAL RESULTS

5.1. Verification of velocity and pressure

The numerical channel flow results for velocity and pressure using the 40×480 grid are shown
in Figure 4 along with the exact solution for the fully developed case (30). The accuracy of the
numerical velocity profile was found to depend more on the temporal convergence criterion rather
than the grid resolution. Specifically, the error between the exact and numerical solutions had a
maximum value of 2.5% for all grid resolutions tested herein, as long as res�10−5. The numerical
pressure solution exhibits fully developed behavior for x/h�8, as evinced by the constant pressure
gradient. This agrees with the entry length prediction of Le/h≈9, based on the relation Le/h≈
0.06Reh from the integral momentum analysis of Sparrow et al. [43].

Table I shows the apparent order of the CFD/SEM numerical scheme for two different temporal
convergence criteria: 10−5 and 10−6. The apparent order of the scheme p̂ (not to be confused

Figure 4. Numerical solution of the u velocity at x/h=11.4 (left) and coefficient of pressure at y/h=0.5
(right) using the 40×480 grid with temporal convergence criterion: ♦, 10−4; �, 10−5; 	, 10−6. The exact

solution for steady-state, fully developed flow is denoted by the solid line.
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Table I. Apparent order of the numerical scheme for the
CFD/SEM simulations.

Sensitivity
Convergence Velocity
(res) (u) Su,� Su,h Su,�p/�x

10−5 4.42 2.03 0.72 2.04
10−6 4.49 1.95 0.88 1.97

with the pressure p) is calculated using three of the five grid resolutions studied herein (10×120,
20×240, 40×480) according to [15] as

p̂= ln

∣∣∣∣ f3− f2
f2− f1

∣∣∣∣
/

ln(r) (38)

where fk denotes the numerical solution using the kth grid, with k=1 representing the finest grid
resolution, and r denotes the ratio of grid spacings between successive grid refinements (in this
case, r =2). The values listed in Table I represent the average value of p̂ at x/h=11.4. Recall,
the formal order of accuracy of the present finite volume scheme is two. Since the present flow
evolves temporally, (38) was evaluated at a fixed residual. Interestingly, the apparent order of
accuracy of the u velocity is about four. However, if the numerical simulation is run using a higher
viscosity (�=0.01kgm−1 s−1 as opposed to �=1.78×10−5 kgm−1 s−1), then the observed order
of accuracy reduces to two. This is due to the fact that the coarse-grid (10×120) simulation with
the lower � value has significantly higher error compared with the coarse-grid simulation with the
higher � value; whereas, the finer-grid simulations for both � values showed very similar magnitude
of error. Therefore, the increased magnitude of error in the coarse-grid simulation anomalously
increases the apparent order of accuracy for the lower viscosity simulation. The � and �p/�x
sensitivity parameters have an apparent order of accuracy of two; while, the h sensitivity parameter
has an apparent order of accuracy less than one. Duvigneau and Pelletier [25] also discusses the
difficulty in achieving accurate results for geometric sensitivities using SEM coupled with a finite
element discretization approach.

5.2. Verification of sensitivity parameters

Sensitivity parameters were computed using finite difference, complex-step differentiation, and
SEM. Numerical simulations were performed using the same geometry, grid resolutions, and
temporal convergence criteria as described in Section 4.2. Results for the scaled normalized sensi-
tivity parameters are shown in Figure 5 for the 40×480 grid with a convergence criteria of 10−5

on all quantities. All of the simulations exhibit excellent agreement with the exact solutions for the
sensitivities given in (31)–(33). Note that h sensitivity was not computed using complex-step differ-
entiation. As with the numerical solution for the velocity field, error in the sensitivity parameters
seemed to depend more on the temporal convergence criterion, rather than grid resolution.

The influence of the parameter step size �P on the solutions for Su using finite difference
and complex-step differentiation methods is shown in Figure 6. Results were computed using the
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Figure 5. Exact solution (solid lines) of the scaled normalized sensitivity parameters compared with the
numerical solution. ♦ Complex-step differentiation, 	 central finite difference, and � SEM.

Figure 6. Parameter step size versus numerical error. Method: solid symbols, complex-step differentiation;
open symbols, finite difference. Sensitivity parameter: ◦ Su,�p/�x , � Su,h , ♦ Su,�.

40×480 grid with a temporal convergence criterion of 10−5 on the u velocity. The percent error
is defined as

% error=100|�| (39)

with � as given in (17). The error is only calculated in the fully developed region wherein the
analytical solutions are valid. In the finite difference method, the error starts out relatively high for
large �P . As �P decreases, the error decreases to a local minimum and then increases again to
a constant value with further reduction in �P . Although the magnitude of the error and the local
minimum varies for the different sensitivity parameters, the trend remains the same. Therefore,
in order to ensure minimal error in the finite difference calculation, a parameter study (using
a range of �P) must be performed for each sensitivity parameter of interest. In contrast, the
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Figure 7. Residual curves in the SEM simulation: u velocity, – Su,�, – – Su,h .

error associated with the complex-step differentiation method decays to a global minimum as �P
decreases. This represents one of the main advantages of the complex-step differentiation method.
A parameter study in terms of �P is unnecessary, as long as the step size remains small enough
(�P<1×10−3 in this study, but Martins et al. [26] suggest �P<1×10−8). In this test case, for
any given sensitivity parameter, the error in complex-step differentiation always remains less than
that of the finite difference method for �P/P̄<1×10−4. The present results agree with previous
studies using finite element-based CFD algorithms for calculating sensitivity parameters [12, 26].

The residual curves of the u velocity, as well as the � and h sensitivity parameters computed
from SEM, are shown in Figure 7 for the 40×480 grid. The residual for the pressure gradient
sensitivity follows similar trends as the other two sensitivity parameters show. While the curves
display monotonic convergence trends for the explicit solve, the SEM solutions for Su,� and Su,h
converge at a slightly slower rate than the solution for the velocity. Specifically, the residual of
u decreases one decade (from 1×10−3 to 1×10−4) in 285 iterations, whereas the residuals of
the h and � sensitivities require 330 and 410 iterations, respectively, for the same reduction in
residual. Terminating the CFD/SEM solve when the residual of u reaches 1×10−4 results in a
maximum error in Su,� of 20.54%, which decreases to 8.13% by allowing the residual of Su,� to
reduce to 1×10−4. For res<1×10−4, the rate of convergence of the sensitivity solutions increases
substantially. When the residual of Su,� reaches 1×10−5, the maximum error in that quantity
measures only 1.25%. From these results, it is recommended that the global convergence of the
SEM computation be based on the criterion that the residual of all quantities, including field
variables and sensitivity parameters, achieve the specified tolerance level. The implication is that
finite volume-based SEM may require additional computational time beyond that for the velocity
field alone.

Figure 8 shows the L2 norm of the exact error in the CFD/SEM solutions as a function of
temporal convergence criterion and parameterized by grid resolution. Results for the u velocity
and Su,�p/�x indicate that the most accurate solutions are achieved with the 40×480 grid, and

that negligible improvement in accuracy is obtained for residuals less than 10−5. Furthermore,
for residual values less than 10−5, the error follows asymptotic convergence with respect to grid
resolution. Results for � and h sensitivities (not shown) follow similar trends.
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Figure 8. L2 norm of the error in the CFD/SEM solutions at x/h=11.4 as a function of residual and
grid spacing. ◦ u velocity, Su,�p/�x , · · · 10×120 grid, – – 20×240 grid, – 40×480 grid.

Figure 9. Performance comparison of the three different numerical sensitivity methods: (left) L2 norm
of the exact error, (right) normalized computational time. � SEM, finite difference, complex-step

differentiation, – – benchmark from the CFD solution for the u velocity.

5.3. Comparison of sensitivity methods

Figure 9 compares the L2 norm of the exact error in the fully developed numerical solutions of
the scaled sensitivity parameters using the three different methods: finite difference, complex-step
differentiation, and SEM. For reference, ‖�‖2 based on the u velocity is indicated with a horizontal
dashed line. All simulations utilized a grid of 40×480. For the finite difference method, the
optimum value of �P/P that yielded the minimum error was used. For complex step differentiation,
a value of �P/P=1×10−6 was used. In SEM, all quantities were allowed to converge to a
residual value of 1×10−6. Of the cases tested herein, complex step exhibits the least error. SEM
exceeds finite difference in terms of error in both the height and pressure gradient sensitivities.
Regardless of the method, the error in the h and � sensitivities is about twice the error of the u
velocity; while, the error in the �p/�x sensitivity is about the same as that of the u velocity.
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The computational time for each sensitivity method, relative to the time required to compute the
primitive variables, is also shown in Figure 9. These times represent one sensitivity parameter solve
per numerical solution of the velocity field, and do not include post-processing time (as described
further below). A first-order forward difference approximation of the sensitivity coefficients requires
one solve for the baseline case, along with one additional solve for each of the design parameters,
using the perturbed value of that parameter. To generate second-order sensitivity coefficients using
the finite difference method requires two solves for each of the design parameters, perturbed
above and below the corresponding baseline value. The finite difference time presented in Figure 9
represents second-order (central-difference) calculations, wherein the CFD algorithm was started
from the same initial conditions as used in the baseline flow. As such, the computational time for
the finite difference sensitivity method is approximately two times the order of a single primitive
variable solve. In contrast, when the CFD algorithm is started using initial conditions based on
the converged baseline solution, the computational time of the finite difference sensitivity method
for one perturbed design parameter (relative to the time to solve the baseline case) decreases from
2.0 to 1.46.

The SEM solves a set of equations similar to that of the primitive variables. As such, the same
numerical algorithms are employed for SEM as that for the primitive variables. In the specific
case of the fractional-step algorithm used here, the majority of the computational time is spent
implicitly solving the Poisson equation for the scalar potential. The time required to solve the
Poisson equation in a fractional-step algorithm (for the primitive variables) can consume up to 90%
of the total computational time when using iterative methods [44]. For the case where the diffusion
terms are solved using the Crank–Nicholson method as well, the time required to solve the scalar
potential Poisson equation is still more than two-thirds of the total computational time [45]. For the
current work, the advection and diffusion terms (in the momentum and sensitivity equations) are
solved explicitly in the fractional-step algorithm. The fact that the sensitivity equations are linear
compared with the nonlinear momentum equations provides no additional computational time
efficiency. The SEM, therefore, involves a computational solve time of the order of the primitive
variable solution, as shown in the data in Figure 9. The complex-step method, while involving
complex arithmetic, requires only the complex version of the baseline primitive variable solve. For
the present fractional-step algorithm, the complex-step computational solve time is on the order
of 1.5 times the primitive variable solution alone.

The data in Figure 9 represent the relative computational time only for one sensitivity parameter
solve. For comparison, the data of Martins et al. [46], when reformulated in this way, show that
the average computational time (relative to the baseline solution) per sensitivity solve per design
parameter using the finite difference and complex-step methods is 1.79 and 1.91, respectively. The
results from the present study indicate that the average computational time per sensitivity solve
for the finite difference (initiated with the converged baseline solution following the approach
of Martins et al. [46]) and complex-step methods is 1.46 and 1.50, respectively, which is not
inconsistent with Martins et al. [46]. Note, however, that the CFD algorithm in Martins work is
different from that used in this study, and therefore discrepancies in computational time are to be
expected.

With respect to ease of implementation, finite difference has a clear advantage in that the values
of the parameters of interest only need to be perturbed and the governing equations solved (once
for each different parameter set) without any modification to the preexisting CFD code. Post-
processing of the data to obtain the actual sensitivity parameters, however, requires additional
computational time, and when considering geometric sensitivities, special care must be taken with
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interpolation to guarantee comparison of data at the same location in the mesh. In addition, the
finite difference method requires a parameter study in �P and may not be appropriate for flows
having no steady-state solution. The complex-step method is also relatively easy to implement in
the framework of MATLAB (used for this study), and post-processing of the data only requires
simple algebraic function evaluations. Furthermore, complex step does not require a parameter
study in �P . Perhaps the most difficult method to implement was SEM, mostly due to the addition
of source terms in the governing equations for some of the sensitivity parameters and the presence
of parameter dependence in the boundary conditions. SEM does not, however, require any post-
processing. In summary, complex-step differentiation appears to have some benefit over finite
difference.

6. UNCERTAINTY ANALYSIS

The two types of uncertainty in the numerical solution considered here are numerical uncertainty
and input uncertainty. Numerical uncertainty refers to an estimate of the exact error between the
numerical solution and the exact solution. Input uncertainty refers to inexact measurement of
parameters required as input to the numerical algorithm (e.g. fluid properties, dimensions of the
geometry, inlet boundary conditions) and the propagation of that measurement uncertainty through
the numerical simulation. Assuming zero uncertainty in the model, the sum of the numerical and
input uncertainties yields the total uncertainty in the numerical solution.

6.1. Numerical uncertainty

Since analytical solutions are not available in most practical applications, numerical uncertainty
bounds in the computational simulation must be estimated. The performance of the Grid Conver-
gence Index (GCI) of Roache [47] as an error estimator for the sensitivity derivatives computed
using SEM with the present finite volume approach is evaluated. GCI is defined as

GCI= Fs
r p̂−1

∣∣∣∣ f2− f1
f1

∣∣∣∣ (40)

where p̂ is the apparent order of the scheme as given in (38) and Fs denotes a factor of safety.
Figure 10 compares GCI with the exact error in u and Su (computed with SEM) for residual
tolerances of 10−5 and 10−6 using grid resolutions of 40×480 and 20×240. A value of Fs=3
was used, as suggested by Roache [15], but may be more conservative than necessary for some of
the sensitivities. Each data point in Figure 10 represents one node value along the line x/h=11.4.
The average difference between the exact error and the GCI error estimator is 2.5%, based on an
ensemble average of all the data shown in Figure 10. In particular, GCI tends to overestimate the
error in Su,h , while slightly underestimating the error in the u velocity and the two other sensitivity
parameters. The GCI error does not depend significantly on the value of the residual (at least for
the residual tolerances of 10−5 and 10−6 used here), except for u whereby GCI underestimates
the true error twice as much with res�10−5 compared with res�10−6.

6.2. Input uncertainty

The previous sections have focused on verification of the numerical solution with respect to
an exact solution. In the process of validation with experimental results, it is important to
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Figure 10. Comparison of the GCI error estimator versus exact error: (left) res�10−5 and (right) res�10−6.
Symbol shapes: ◦ u, � Su,�, ♦ Su,h , 	 Su,�p/�x .

quantify the propagation of input data uncertainty into the numerical solution. For example,
measurement of design parameters in the experiment is only accurate to within a given uncer-
tainty, say P±�P . Following Turgeon et al. [7], the resultant uncertainty bounds (worst-case
scenario) on the numerical solution can be calculated using a first-order Taylor series expansion of
the form

|u(x, y; P+�P)−u(x, y; P)|�
3∑

i=1
|Su(x, y; Pi )�Pi | (41)

where P=(�,�p/�x,h). For the purpose of calculating bounds on the numerical solution due to
input uncertainty, a value of 1.0% was used for �P/P .

Figure 11 shows the input uncertainty as error bars. The magnitude of the numerical uncertainty,
in this case, is negligible relative to the input uncertainty. Therefore, error bars corresponding to
the numerical uncertainty are omitted in Figure 11, since they fall within the thickness of the
lines on the plot. In addition, uncertainty in the measurement of the geometry (i.e. channel height)
dominates the overall input uncertainty in this case. One can see this directly from Figure 5,
where it is observed that the � and �p/�x sensitivities are, on average across the gap, half of
the magnitude of the u velocity; on the other hand, the h sensitivity is, on average, three times
greater than the velocity field. Therefore, the flow is nearly an order of magnitude more sensitive
to perturbations in the channel height.

The asymmetry in the error bars on the left plot stems from the form of the boundary param-
eterization, as given in (37). Because the lower wall is assumed fixed at y=0, all of the input
certainties in the channel height translate into an uncertainty in the location of the upper wall.
This directly leads to negligible uncertainty in the velocity near y=0 and maximum uncer-
tainty near y=h. In the right plot of Figure 11, the coordinate system has been moved to the
channel centerline. In this scenario, the input uncertainty in the channel height is split equally into
uncertainties in the location of both the upper and lower walls, which leads to symmetric error
bars. The latter scenario makes more sense in terms of validating the numerical simulation with
experimental data.
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(a) (b)

Figure 11. Uncertainty in the fully developed velocity profile. Origin located at (a) lower boundary and
(b) channel center. Error bars represent the input uncertainty.

7. CONCLUSIONS

A finite volume-based fractional-step computational fluid dynamics (CFD) algorithm has been
developed for the purpose of computing sensitivity parameters. Three different methods for gener-
ating sensitivity parameters, including finite difference, complex-step differentiation, and contin-
uous sensitivity equation method (SEM), were compared in terms of accuracy and computational
efficiency. The algorithms were verified using unsteady, two-dimensional flow through a straight
channel, which has an exact solution under steady-state, fully developed conditions. This particular
flow field possesses parameter dependence in the governing equations, as well as the boundary
conditions. The design parameters of interest are the fluid viscosity, imposed pressure gradient, and
channel height. Results indicate that errors in the sensitivity parameters are generally of the order
of magnitude of the error in the velocity field, with the different sensitivity methods producing
similar order of magnitude error for each parameter. Of all the three sensitivity methods, complex
step exhibited the least error and required the least computational time. The Grid Convergence
Index was shown to be an appropriate error estimator for the sensitivity parameters, when used
with a factor of safety of 3. Sensitivities were used to illustrate how uncertainty in the actual values
of the design parameters propagates into the numerical solution for the velocity field.
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